Assignment - 4

1. Is $\bigoplus_{i=1}^{\infty} \mathbb{Z}_{n_i}$, where $n_i \in \mathbb{N}$ a free \mathbb{Z} module ?

Solution: Suppose $\bigoplus_{i=1}^{\infty} \mathbb{Z}_{n_i}$ is a free \mathbb{Z} module, i.e., there exists a \mathbb{Z} -module isomorphism $\phi : \bigoplus_{i=1}^{\infty} \mathbb{Z}_{n_i} \to \bigoplus_{i \in I} \mathbb{Z}$. Let $e_1 \in \bigoplus_{i=1}^{\infty} \mathbb{Z}_{n_i}$ be the vector with $\overline{1}$ at the first coordinate and $\overline{0}$ everywhere else. Then e_1 is an element of order n_1 and hence the order of $\phi(e_1)$ divides n_1 . Hence $\phi(e_1) = 0$. This is a contradiction to the assumption that ϕ is an isomorphism. Therefore, ϕ can not be an isomorphism, i.e., $\bigoplus_{i=1}^{\infty} \mathbb{Z}_{n_i}$ is not a free module.

- 2. Let M be a finitely generated A module and $\phi : M \to A^n$ be a surjective homomorphism.
 - (a) If $\phi(m_i) = e_i$ for i = 1, ..., n, then prove that $M = \langle m_1, ..., m_n \rangle \oplus \ker \phi$.
 - (b) Deduce that ker ϕ is a finitely A-submodule of M.

Solution: (a) Since $\langle m_1, \ldots, m_n \rangle$ and ker ϕ are submodule of M, $\langle m_1, \ldots, m_n \rangle \oplus$ ker ϕ is submodule of M. Let $m \in M$. Therefore $\phi(m) \in A^n$. We have

$$\phi(m) = \lambda_1 e_1 + \dots + \lambda_n e_n, \text{ where } \lambda_i \in A$$
$$= \lambda_1 \phi(m_1) + \dots + \lambda_n \phi(m_n)$$
$$= \phi(\lambda_1 m_1 + \dots + \lambda_n m_n).$$

and $\phi(m - \lambda_1 m_1 + \dots + \lambda_n m_n) = 0$. Therefore $m \in \langle m_1, \dots, m_n \rangle + \ker \phi$. We can observe that $\langle m_1, \dots, m_n \rangle \cap \ker \phi = 0$. Hence M is a submodule of $\langle m_1, \dots, m_n \rangle \oplus \ker \phi$.

(b) We have an isomorphism

$$\frac{\ker \phi + \langle m_1, \dots, m_n \rangle}{\langle m_1, \dots, m_n \rangle} \cong \frac{\ker \phi}{\langle m_1, \dots, m_n \rangle \cap \ker \phi}$$

Note that $\frac{\ker \phi + \langle m_1, \dots, m_n \rangle}{\langle m_1, \dots, m_n \rangle}$ is finitely generated and $\langle m_1, \dots, m_n \rangle \cap \ker \phi = 0$. Therefore $\ker \phi$ is finitely generated. 3. Let $R = k[x^2, xy, xy^2, xy^3, \ldots]$ be polynomial ring over a field k. Prove that $I = \langle x^2, xy, xy^2, xy^3, \ldots \rangle$ is not finitely generated ideal over R.

Solution: Suppose I is finitely generated, say generated by $\{f_1, \ldots, f_r\}$. It is clear that there exist a positive integer n > 0 such that each $f_i \in k[x^2, xy, xy^2, xy^3, \ldots, xy^n]$, for all $i = 1, \ldots, r$. Since $xy^{n+1} \in I$, we can write $xy^{n+1} = \sum_{j=1}^{r_1} \alpha_j f_{i_j}$ for some $\alpha_j \in R$ and $\{f_{i_1}, \ldots, f_{i_{r_1}}\} \subseteq \{f_1, \ldots, f_r\}$.

Let S = k[x, y]. Considering the above expression for xy^{n+1} in S, and setting $f_{i_j} = xg_{i_j}$ for some $g_{i_j} \in S$, we get

$$y^{n+1} = \sum_{j=1}^{r_1} \alpha_j g_{i_j}$$

Now putting x = 0, we get that

$$y^{n+1} = \sum_{j=1}^{r_1} \beta_j g'_{i_j},$$

where β_j 's are either 0 or in k (since each monomial in α_j is a multiple of x, except constant term) and g'_{i_j} contains only powers of y. Note also that the maximum power of y appearing in the terms of f_{i_j} 's is n. Therefore, the above equation contradicts the linear independence of the set $\{1, y, \ldots, y^{n+1}\}$ over k. This contradiction says that our assumption that I is finitely generated is wrong. Therefore I is not finitely generated ideal in R.